An Unexpectedly Large Count of Trees in the West African Sahara and Sahel - Bassin Arachidier au Sénégal
Simple
- Date ( Révision )
- 2022-05-17T19:08:39
- Edition
- 1.0
- Date d'édition
- 2015-01-01
- Identificateur
- https://doi.org/10.3334/ORNLDAAC/1832
- Etat
- Finalisé
- Fréquence de mise à jour
- Lorsque nécessaire
- General ( Thème )
-
- remote sensing
- vegetation map
- deep learning
- Very High spatial resolution optical imagery
- GEMET - INSPIRE themes, version 1.0 ( Thème )
- GEMET - Concepts ( Thème )
- GCMD Keywords viewer ( Thème )
- TETIS Thesaurus, version 1.0 21112019 ( Thème )
- Limitation d'utilisation
- Credits: Brandt, M., C.J. Tucker, A. Kariryaa, K. Rasmussen, C. Abel, J.L. Small, J. Chave, L.V. Rasmussen, P. Hiernaux, A.A. Diouf, L. Kergoat, O. Mertz, C. Igel, F. Gieseke, J. Schöning, S. Li, K.A. Melocik, J.R. Meyer, S. Sinno, E. Romero, E.N. Glennie, A. Montagu, M. Dendoncker, and R. Fensholt. 2020. An unexpectedly large count of trees in the West African Sahara and Sahel. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1832. This dataset is openly shared, without restriction, in accordance with the EOSDIS Data Use Policy: https://earthdata.nasa.gov/earth-observation-data/data-use-policy?_ga=2.213474524.955659520.1604914682-676515214.1576510456
- Contraintes d'accès
- unrestricted
- Contraintes d'utilisation
- unrestricted
- Restrictions de manipulation
- Non classifié
- Explications sur les restrictions
- unclassified
- Système de classification
- no classification in particular
- Description de manipulation
- description
- Type de représentation spatiale
- Vecteur
- Distance de résolution
- 50 cm
- Langue
- en
- Jeu de caractères
- Utf8
- Catégorie ISO
-
- Environnement
- Imagerie/Cartes de base/Occupation des terres
- Biote
- Date de début
- 2005-11-01T00:00:00Z
- Date de fin
- 2018-03-31T00:00:00Z
- Informations supplémentaires
- some additional information
- Nom du système de référence
- EPSG / 32628
- Format (encodage)
-
-
GeoPackage, ESRI Shapefile
(
1.0
)
-
GeoPackage, ESRI Shapefile
(
1.0
)
- Ressource en ligne
- Vector Layer WARNING: 15Gb!! ( file for download )
- Ressource en ligne
- Geopackage ( file for download )
- Ressource en ligne
- NASA African trees tilemap ( file for download )
- Ressource en ligne
-
utm_28_tiles
(
OGC:WMS
)
WMS Service
- Ressource en ligne
-
utm_29_tiles
(
OGC:WMS
)
WMS Service
- Niveau
- Jeu de données
Résultat de conformité
- Autres appellations ou acronymes
- This is is some data quality check report
- Date ( Publication )
- 2022-05-17T19:08:39
- Explication
- some explanation about the conformance
- Degré de conformité
- Oui
Résultat de conformité
- Date ( Publication )
- 2010-12-08T12:00:00
- Explication
- See the referenced specification
- Degré de conformité
- Oui
Résultat de conformité
- Date ( Publication )
- 2008-12-04T12:00:00
- Explication
- See the referenced specification
- Degré de conformité
- Oui
- Généralités sur la provenance
- The mapping of woody plants at the level of single trees was achieved by the use of satellite data at very high spatial resolution (0.5 m) from DigitalGlobe satellites, combined with modern machine-learning techniques. More than 50,000 DigitalGlobe multispectral images from the QuickBird-2, GeoEye-1, WorldView-2 and WorldView-3 satellites, were collected from 2005–2018 (in November to March) from 12° to 24° N latitude within Universal Transverse Mercator zones 28 and 29 (provided under the NextView license from the National Geospatial Intelligence). Normalized difference vegetation index (NDVI) images were used to distinguish tree crowns from the non-vegetated background because the images were taken from a period during which only woody plants are photosynthetically active in the study area. A set of decision rules was applied to select images for the mosaic, consisting of 25 × 25 km tiles. This resulted in 11,128 images that were used for the study. The neural network model (UNet; publicly available at https://doi.org/10.5281/zenodo.3978185 ) was used to automatically segment the tree crowns—that is, to detect tree crowns in the input images. The segmented areas were then converted to polygons for counting the trees and measuring their crown size. Using machine learning coupled to training data of 89,899 manually delineated and annotated trees, the location of individual trees over 1,300,000 km2 and their crown area were determined from the input images. Every tree with a crown area >3 m2 was enumerated resulting in 1,837,565,501 trees.
gmd:MD_Metadata
- Identifiant de la fiche
- 51c7c1a1-33e9-4f5f-8da8-f5b7c9ebb75c XML
- Langue
- en
- Jeu de caractères
- Utf8
- Type de ressource
- Jeu de données
- Date des métadonnées
- 2022-05-17T19:20:40
- Nom du standard de métadonnées
- ISO 19115:2003/19139
- Version du standard de métadonnées
- 1.0
Proposition de citation
. An Unexpectedly Large Count of Trees in the West African Sahara and Sahel - Bassin Arachidier au Sénégal.
http://147.100.164.43:8080/geonetwork/srv/api/records/51c7c1a1-33e9-4f5f-8da8-f5b7c9ebb75c